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H C(~)II =k and g/e<1, it follows that 

whence we obtain Hu[Ix•ell vH 2, c = |/(e 4- g). 

The proof for the other cases is simpler. 
Consequently, the operator Es'(S2,0 ) indeed has a bounded inverse. 
By the Implicit Functions Theorem /4/, for small 8 a unique solution S (x, e) of Eq.(6) 

exists, differing only slightly from Sj ~). This proves the existence of an analytic sol- 
ution S + of Eq.(1). Since the assumptions of the theorem are invariant when Tx is replaced 
by --Yl in the formula for the Lagrangian, this implies the existence of a second solution S. 
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A REPRESENTATION OF THE SOLUTIONS OF THE GENERALIZED CAUCHY-RIEMANN EQUATIONS 
AND ITS APPLICATIONS * 

S.V. PAN'KO 

A method of integral representations for the generalized Cauchy-Riemann 
system in terms of an arbitrary analytic function, similar to the 
well-known Whittaker-Polozhii representation /1/, is developed. The 
representation includes various well-known results as special cases, and 
the limiting case leads to the classical representation of the theory of 
a generalized axisymmetric potential. The representations established 
are used to reduce mixed problems for the system to paired equations and 
then to a Fredholm equation of the second kind. At the same time, a 
device is described for regularizing paired equations, and a case in 
which a closed solution exists is presented. 

The results are extended to a sytem of more-general form and also to 
second-order equations, whose type and dimensionality are not essential. 
It is shown that the integral operators constructed here convert the 
solution of a parabolic or hyperbolic equation with variable coefficients 
into a solution of the classical equations of heat conduction and wave 
propagation, thus furnishing an explicit representation for solutions of 
the corresponding Cauchy problems. 

The effectiveness of the approach is demonstrated with reference to 
the problem of inflow in a fissure in an inhomogeneous layer of finite 
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width. Simple formulae for the pressure and discharge of fissures are 
presented. 

Special cases of the system 

0~ OH O~ OH = A(m cth me) 1-2" 0--'~-" 00 - - - -  A(meth mo) 1-2~ 0""~' O6 (oA) 

where A , ~ ,  m 2 are arbitrary real parameters, have found wide application in problems of the 
mechanics of continuous media and physics in general. 

Thus, if 2~= --I we obtain the well-known approximation /2/ of the Chaplygin equations, 
which has been used for the effective solution of problems in subsonic (A > 0) and supersonic 
gas- and wave-dynamics (A < 0). 

If 2~ = p, mp = I. we have a system of equations for non-linear filtration on the hodo- 
graph plane /3/ for the law of resistance /3-5/ 

~ ( W ) -  (ur~lP~21P) pI', " [ s h P ° / P |  
-- w = ~ ~chV o/p~ (0.2) 

which describes various types of rheological behaviour, from thixotropic to pseudoplastic, 
and contains practically all the most commonly used models, with the exception of the power 
model. In particular, putting p=2(~=--1,2m=i) we obtain the system of equations of fil- 
tration problems with limit gradient, studied in detail in /3/. It is also known /6-8/ that 
for 29=--I- 2k (where ~ is an integer) the solution of the system can be expressed in terms 
of a solution of the Cauchy-Riemann system in the form of a finite differential operator of 
order k + I. This considerably simplifies the determination of exact solutions of mixed 
problems for the initial system in non-canonical regions (the case k= 0 corresponds to the 
model of a filtration law with limit gradient /9/ and its one-parametric generalization /i0/). 

Finally, as m~0 we obtain the system of equations of an axisymmetric potential, whose 
solution admits of an integral representation in terms of an arbitrary analytic function /i/; 
this provides the basis for a universal method of reducing mixed problems for the above system 
to Fredholm equations of the second kind /i, 11-14/. 

|. Eliminating the function ~ (o, 0) from the initial system (0.I), we obtain the second- 
order equation 

O~H 2ra (i - -  2~) OH 02H 
Oo a ~- sh2mo do" + N = 0  (1.1) 

Looking for a solution of this equation in the form 

H(o,O) = ~ AnZn( t )expnO,  t = - - s h S m o  
n = l  

(1.2) 

we see that Zn(t) is a hypergeometric function 

Zn (t) = ,F~ (~, ~; ~; t), - - ~  = ~ = n/2m, y = l - -  

Since the condition for the convergence of the integral in Euler's formula /15/ 

B (?, ~ - -  ~), F ,  (~, ~; ?; t) = i ~ -*  (t - -  T) ?-~-1 (1 - -  ~ ) - ~  dT 
o 

(t.3) 

(y>~) need not be satisfied in this case, we shall use the identities /15/ 

2 , F l ( - - g % a ; l / 2 ; t )  = ( V  t - t  T ~  ~/ t)'(~ + ( V t - t - i V t - ) , a  

B (y, e)2 Ft ( - -  ¢z, ¢z; y -~ e; t) = i yv-~ (t - -  y)'-~ ~F 1 ( - -  ¢~, ~; ¥; ty)  dy  
o 

(t.4) 

(where (B (y, s) 
We obtain 

is the beta function), putting 2y = I~ 28 = I- 2~ in the second identity. 

B (1/~, 1/2 __ 10z F1 ( - -  c¢, ~, '1_ - -  ~t; t) = i eF1 ( - -  c~IE~' 1/2" t,g) (1 - -  y)-'h-~ I/ 'Y dy  (1.5) 
o 
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We now substitute (1.5) into (1.2) and interchange the summation and integral symbols, 
assuming that this is legitimate. The result is 

I co 

(1 --/t) - ' / ' -~  d t/(o, o) = V, I s .  (o, ty) 7 V  
0 n ~ l  

S .  (0, ty) = 2B.  ~F a (--  ct, co; ~1~; ty), A .  = B (~/~, z/, __ }~) B .  

Using Eqs.(1.3) and (1.4), we transform the sum in the integrand as follows: 

s .  tu) = B. + ,._") 
n = l  *1=1 

z± = exp s±, s+ --'-- O -~- im -x Arsh ] / ' - -  ty 

q (z). 
Suppose now that B, are the coefficients of the Taylor series of an analytic function 

Then we have 

S.z±" = q (z±) = g (s±) 
n=l 

Transforming to variables u----~y and u (t------sh 2 ~u~), we conclude that 

1 

s O, o) : ~ ( 1 -  u,)-, [e (8,) + g (,_)ldu (i.61 
0 

s± =O~, ~ = m - ' A r s h u s h m ~  

The function , (~, O) can be determined in a similar fashion, but it is easier to use the 
following property of system (0.1). 

Define 

, = ( t h _ _ ~ ) , - , ~  8Vao ' H =  aVao 

and insert these relations into the initial system. It then transpires that V (u, 0) 
exactly the same equation as H (a, 0). Thus 

H(p,  0) ffi i [G(0 + i[) + G(0 - -  i[)] (t - -  u')-vdu 
o 

1 

~= t \ T  / d ] / t  -}- u~' sh~ mcr 
0 

G (s) = g' (s) 

satisfies 

(~.7} 

We have thus established the desired integral representation of a solution of system 
(0.1) in terms of an arbitrary analytic function. 

Applied to problems of filtration with a limit gradient /3/, formula (1.7) immediately 
yields the asymptotic behaviour of ~ (if, 0) near the boundary of the stagnation zone, where 
o - - 0 :  

1 _ _ _  1 

These representations are also convenient when the distribution of the discharge H(u, 0) 
is known along the boundary of the stagnation zone, H(0, 0) =~(%). Setting a = 0 in the 
expression for H(a, 0), we at once determine the arbitrary function G ($): 

H (0, O) = ! (0) = 2G (0) i (t - u,)-~ du 
o 

In view of this state of affairs, we can also consider inverse problems of lengthwise 
displacement of rigid-plastic bodies, by virtue of the analogy /16/ with filtration problems 
with limit gradient. Indeed, if we assume that the borderline between the plastic and the 
rigid zones (the rigid zone corresponds to the stagnation zone in filtration problems) has a 
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given curvature U (0), 
from (1.7) that 

it follows from the formula of transition to the physical plane /3/ and 

0 

× (0) = 2G' (0) i (i - -  u2)-,du 

Transforming to the new variable ~ (see the last equality of (1.6)) in (1.7), we define 

2G (O + ~)  = U (~, O) - -  tV (~, O) 

The result is the following representation for a solution of system (0.1): 

o 
m ch m~ 

H (o, O) = sh~m¢~ i U (~, O) ~ d~ 
0 

o 
_____ i" O" sh m~ (eL O) (m eh rnc~)2~ I V ,g, ) ~ d~ 

0 
A = s h  2 m ~ - s h  2rn~ 

(~ .8) 

where U (~,8) and V (~,O) (V (0, 8) = 0) are arbitrary harmonic functions; this generalizes 
the known representations of solutions of the equations of a generalized axisymmetric potential 
/i/ and indeed yields the latter when m-+0. The fact that //(if, 0) and ~ (if, 0) in (1.8) 
indeed satisfy the initial system can be verified directly. 

We shall now exhibit a solution of system (0.I) that differs from (1.8) in that the 
integration is performed from o to c~, and U(~,0) and V(~,0) are replaced by certain 
other harmonic functions U,(~, O) and V~(~, 0). Concerning the latter we require that 

F ( ~ )  : U I - - z V ,  ~ exp ( 2 9 - -  ~)~, ~ = ~ + tO, e > 0  

as ~--~oo uniformly in 0 (this guarantees convergence of the integrals) and establish 
their relation with U (~, 0) and V (~, 0). 

If one tries to do this using formulae for the analytic continuation of the hypergeometric 
function in (1.5) (see /15/), the results involve quite cumbersome manipulations. Much to be 
preferred is another approach, based on a generalization of an identity in /17/, p.574, which 
links Cauchy integrals with integrals of fractional order: 

i[ sm~n ~ ~(x,O)[  T ~l-,, ] dt ~ ~(t,O) 
[ " - ' - K ' - - j  r--"7"~'F\-T'/ d r - - c o s v ~ ( t , O )  (z-- t)  ~ -- ~ ( t_x)~ dt (1.9) 

0 0 x 

In the representation for H (~, O) we now transform to variables x = sh' ma, t = sh 2 m~, 
t o  o b t a i n  

x 
U(x,O)=x~_~/ ,I  U(t,O) dt (1.t0) 

2 I/'?-(~ - t) "~ 
0 

Now, putting 

0 

in (i.i0) and using (1.9), we obtain the required representation: 

co 

H(x,O) =xv- '&,  q~(t'O) dt (t.12) 

in which we must still express ~0 (t, 8) in terms of U (t, 0). But Eq. (I.ii) is a singular 
integral equation for ~ (t, 8), which reduces to an equation with constant coefficients: 

__ (~,(t, 0) COS ~)~ ~ -t $III%'J~X j --7-Z~-- t ( (p~(x, 0) dz =q~z (t, 0) 
0 

(~1 ( t ,  0)  = ~0 ( t ,  0 ) t  l+v,  (~2 ( t ,  0)  = 1/2t*/2-v U ( t ,  0 )  

(1.13) 



Taking the Mellin transform /18/ of this equation and simplifying, we obtain 

~1 ($ '  O) = - -~9  2 ($, O) COS 'Vg - -  qO 2 (8, O) sin va ctg (s + 1 - -  9)st 

cp, (s, O) = ~ ¢~, (t, O) t s-x dt 
o 
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Using the Convolution Theorem and returning to the original functions, in view of (1.13), 
we o b t a i n  

U(t,O) s , n ~  i U(~,0) d~ (1.14) ~( t ,O)- -  2 | r [  Cosv~--  2n ~ r - - t )  
0 

Inserting (1.14) into (i.i0) and transforming to variables 
U (~, 8) is an even function of o, we obtain the desired representation: 

co 

H (e, 0)----- R e  sh~r' m e  I M (W) m ch m____.~ d~ 
, At ~ cr 

= 
, (e, 0 ) =  Im (m ch m@t' ! M ( W ) ~ d ~  

M (IV) ~--- sin yaW (.~,. O) cos.~va I shWm(t'lt O)_m~.) dt 

W =  U (~, O) + tV (~, O), A, = ( s h ' m ~ - - s h  smo) 

e ,~ ,  noting moreover that 

0 . 1 5 )  

(In order to determine the formula for ~ (0, 0), just replace V (t, 0) in the previous 
arguments by U (t, 8)~ 1 + t s and proceed as before) . 

2. Before finding formulae for inverting the integral operators (1.8) and (1.15), we 
offer some preliminary remarks. If 2~ = 1- 2k, where k is an integer, the solution of the 
integral equations obtained from (1.8) for U (~, O) and V (~, 0) is sought by (k + l)-fold 
differentiation, which yields previously known results /6-8/. 

According to /7, 8/, the solutions of system (0.i) and the system obtained from it by 
replacing ~ with ~ + 1 satisfy the following relations: 

th me &Ptt+l '(2.1) 
*~ ~ ~+1 - -  2ttm Oo 

mcth ms OHrt+l 
BY" ~- m~H~+l 2p. Oe 

By virtue of this property, it will suffice to consider the case 12~ ]<I (for 2~ = 
4-I the systems degenerate into Cauchy-Riemann systems), but in that case (1.8) and (1.15) 
are generalizations of Abel's equations /i, 11-14/, for whose solution standard formulae are 
available (see, e.g., /14/, p.71). We thus obtain the following pair of inversion formulae 
for (1.8): 

2 cos~ 0 i (shm~) 1-'~chm~ 
U (~, 0) - - -~ ¢--V~m~ ~ -  ~ " A~_ ~ H ( b  0) d~ (2.2) 

0 

2 costa a i (mchm~) 1-s"shm S 
V(o, 0)= ~ chmo ~o ~ AI-~ * (~'0) d~ 

0 

To derive inversion formulae for (1.15), we need only replace the upper and lower limits 
of integration in (2.2) by oo and ~, respectively, and replace A by At. 

The availability of transformation formulae (1.8) and (1.15), together with their in- 
version formulae (2.2), makes it possible to reduce mixed boundary-value problems for system. 
(0.i) in regions such as a half-strip to problems in the theory of analytic functions; the 
procedure is analogous to that used in the theory of an axisymmetric potential /i, 11-14/. 

We shall assume without loss of generality that a homogeneous Dirichlet or Neumann con- 
dition is stipulated on the boundary 0 =80; at @=0 the homogeneous Neumann condition 
is given on the part of the boundary with ~>~, =u - a typical situation in mixed problems 
(if the boundary conditions at the boundaries of the half-strip are not mixed, application of 
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(2.2) immediately yields a Dirichlet or Neumann problem for the Laplace equation, and a 
closed solution can be constructed by successive quadratures). 

As to the mixed problem 

H ( a ,  Oo) = 0 ,  0 < o < ~  

H ( o , O )  = F ( o ) ,  0 < o < a ,  g ( a ,  0 ) = 0 ,  o > a  

application of (1.18), (1.15) and (2.2) gives the following boundary-value problem for an 
analytic function F (~) = U + tV : 

u (o, 0o) = 0, I ~ I < oo, u (o, 0) = F~ (o), [ o I < a (2.3) 

ou (o ,0)  cos ta  ~ ou (t, 0) mdt 
s i n [ l ~ - - ~ -  ~" ,j ~ sh in ( t - -o )  - - 0 ,  [o]>a 

where the boundary conditions for U (a, 8) - an even function - are extended symmetrically 
to negative a, and FI (o) is defined by the right-hand side of the first formulae in (2.2). 

Using Fourier integrals /17, 18/, one can show that the paired equations of the boundary- 
value problem (2.3) reduce to a complete singular integral equation /17/ 

q~ (o) -~- ~ q) (t) K (o, t) dt = 6R (o) (2.4) 
a 

oo 

K (o, t) = ;~ sh at ¢h eo ( sh k (a - -  Oo) cos kt cos ko 
sh ~' et -- sh 2 eo + J sh kOo ch ke dk 

0 

R (o) = i F1 (t) cos to dr, k = __t= tg pn, ~.6 = sin Ix~t, s = a2m 
0 

which can be regularized by well-known methods /17/. 
Special consideration should be given to the case 2m80 = ~. We will first present a 

formula for solving the following boundary-value problem for an analytic function: 

u ( ~ , 0 o ) = o ,  v ( ~ , o ) = v ( ~ ) ,  [ ~ 1 < ~ o  

The formula, derived in the same way as Schwarz's formula for poles /18/, is 

d l ~ V'(t) dt, a =  ~ 
d--~U ~ tV ="~o  a s h a ( t - - ~ )  200 (2.5) 

Using the Cauchy-Riemann conditions, we rewrite problem (2.3) as 

OV cos!a~ ~' OV s m  ~:x ~ (~, 0) ~- ,) ~ (t, 0) rn d~ = 0 
shm( t - -~ )  

and, using (2.5), replace the integral appearing here as follows: 

0V (~, 0) s in ~ - -  OUo5 ~1~'0~ cos ~ ,  = Re dd-~ e-,~ta = 0 

Thus, mixed problems for system (0.i) in a strip of width O 0 = ~/2m (in the integral 
Eq.(2.4) the regular part of the kernel vanishes) can be solved in closed form, as in the 
analogous problem for the equations of a generalized axisymmetric potential in a half-space 
/I, 11-14/. Such problems clearly reduce to a Riemann problem with discontinuous coefficients 
/17/ in the strip 

R e W = 0 ,  [ o l < o o ,  0 = 8 0  (2.6) 

R e W = F , ( o ) ,  t o  [ < a ,  0 = 0  

Re We - ~  = O, ] o I > a, 0 =0 

As is well-known, solution of this problem yields a regularization of the complete 
singular equation (third method) /17/. The same solution may be used to find asymptotic 
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solutions of the integral Eq.(2.4). 
The above results have several corollaries. Since U (a,8) 

we can replace it by its Fourier expansion 

U (~, 0) = ~ C (k) sh k (0 - -  Oo) co3 ka dk 

0 

is an even function of a, 

inserting it into (1.8). Interchanging the order of integration and using the integral 
representation for Legendre functions of the first kind /15/, we obtain 

H (~, o) = a~ (~h .,o)~ ~ r ( , / , -  ~) i c (~) ~b:k (0-- oo):,.~ {¢h 2,~o) dk 

0 

(2.7) 

From (2.7) we conclude that mixed problems for system (0.i) reduce to paired integral 
e q u a t i o n s  

R e ~ C ( k ) s h k O o P s ~ ( e h 2 m u ) d k = g ( ~ ) ,  f f < a  (2.8) 
0 

Re ~ C (k) eh k%P,s~ (eh 2too) k dk = O, a > a, s = k/2m 

0 

which, as remarked above, can be solved exactly at 2m80 = ~. 

3. The technique just described to determine an integral representation of solutions of 
systems 

~H K (o) o¢ aH a* o - - ~ = - -  - ~ - ,  ~ = K ( ~ )  

in terms of an arbitrary analytic function is clearly applicable in cases when the solution 
of the ordinary differential equation 

H... K'(a) ,,, . (~) -- ~ n. (o) F n~H~ (~) = 0 

can be represented, after suitable reduction, by an integral 

H. (~) = AI (~) i ~ (I -- ~)B ~ (~ ~) ~, ~ = ~[(a) 
0 

(3.1) 

where the constants ~, 6>--I are independent of the parameter n. Special cases of (3.1) 
are the well-known representations of special functions /15/, with the exception of the 
Laguerre and Chebyshev-Hermite functions, the hypergeometric function 2Fz(~, 6; 7; t) and its 
generalization ,F2(u, 6; c; 7; d;t). 

It follows immediately from (1.18) that the integral operator (1.8) also transforms a 
solution of the classical heat conduction equation 

02U/Oo 2 = a~OU/O0 

into a solution of the equation 

02H 2m( t - -  2~) OH ~ OH 
0a 2 ~ sh2mo 0--'if"= a 

and similarly the operator (2.2) transforms a solution of the Cauchy problem for this equation 
into a solution of the same problem for the heat conduction equation. 

In the hyperbolic case (A =--I) the operator (1.8) converts the solution of the wave 
equation into a solution of system (0.1). Then, applying the appropriate arguments, we see 
that a solution of the equation 

0~H O~H 2m(1--2~) 0H = 0  
aa 2 ~ -[- sh 2ma d'-'J" 

can be written in the form 
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i sh2mo i ( i - -  lt2) -~-11' (p) du + H (c% 0) = (t - -  v) (t - - u S ) - ' ~ F ( p ) d u - } - ~ {  1 + uSshZm ° 
- - ]  - -1  

-1  (1 -~- u ~' sh~mo) '/, 

p = O + m - X A r s h u s h m o ,  v =~/2 + p, 

(3.2) 

where F (p) and /(p) are arbitrary functions. As m--~0 formula (3.2) gives the well- 
known solution of the Euler-Poisson-Darboux equation /19/. Using this representation, one 
can easily construct a solution of the generalized Cauchy problem (19/, p. 276) for the 
equation: 

H(o,o) =(1- -~)F(0)  i ( i -  uq-,d~ 
- - 1  

- - 1  

It is quite clear how to extend this result to second-order equations for functions of 
more than two variables (/19/, p.194). We mention only that a solution of the equation 

div [ (mcth  m~)I-2~VH] = 0, H = H (or, O, ~1) 

is transformed by (1.8) into a solution of the three-dimensional Laplace equation which is an 
even function of ~. 

Now consider the following problem for system (0.i) with ~ = 0: 

H (~, 0o) = 0, 0<6<oo 

H ( ~ , 0 ) = P = e o n s t ~  O < o ~ a, OH -~- (o, 0) = 0, ~ > a  

and assume that 2m00 = ~. This problem may be interpreted as the determination of the inflow 
to a fissure of length 2a in an inhomogeneous layer with permeability K=m th mu and width 
h = 280 , on the outer boundaries of which the discharge is zero, while the discharge in the 
fissure, in a high-permeability zone, is a constant P. 

By (1.8), (2.2) and (2.6), this boundary-layer problem reduces to the following problem 
for the harmonic function U (~,8): 

U ( ~ , o o ) = 0  I o l < o o  
U(o,  0 ) = {  2P/n I o l < a  

o I~1>" 

Applying Schwarz's formula for poles /18/ and using (1.8), we obtain the solution as 

o 

Re 2P ~ m eh m~, In shm (~, -- a) d~ 
H ( o ' , O ) =  ~t ~o tIsh~m°--shgm~ shm(~+a)  

~ = ~ + ~ 0  

(3.3) 

and derive a formula for the discharge through the fissure: 

p , 1 +  thma 
q =  ~(a, O)=--ff-~m m (3.4) 

(The integral is evaluated via the substitution th m~ = th ma sin ~.) 
As m-+0 (80-+oo) it follows from (3.3) and (3.4) that 

2P ~ in ~-- a d~ 2Pa H(o, 0)=Re ~% j ~+~ ~ , Q=--~- 
0 

(3.5) 

corresponding to the classical problem of a circular fissure in a half-space. 

The author is indebted to V.M. Entov for useful discussions. 
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